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U.
ABSTRACT

The United States Armed Forces must be capable of deploying to

areas of operations anywhere in the world. Planning for these

deployments is the responsibility of the Joint Deployment Agency.

MacDill Air Force Base. Tampa. Florida. Deployment plans are large

and complex. A straightforward linear programming model of a

deployment plan could easily exceed 700 million decision variables.

This study outlines the development of a system used to assist

planners in determining deployment plan feasibility and :n selecting

modes of transportation. The system consists of a data innut array, an

algorithm to eliminate all unusable variables, and a linear programming

model.

' The largest scenario considered in this study is a 90-day deploy-

ment plan with 90 movement requirements. 9 types of lift assets.

traveling between 22 ports. This corresponds to a linear program-

ming model with 35 million decision variables. The variable reduction

algorithm reduced the number of decision variables to II. 100. and an

optimal solution was found in a total computation time (input. reduc-

tion. optimization, output) time of 6.5 minutes.
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0t 1. INTRODUCTIO N

The complexity and magnitude of deploying US forces to an over-

seas area requires careful and thorough coordination. Sound deploy-

ment planning is critical to the successful execution of any

deployment. This thesis develops a linear prograwrning optimization

model which will assist deployment planners in the evaluation and

development of more efficient deployment plans. The model devel-

oped in this study is an alternative approach to the model currently

being developed by the Joint Deployment Agency (UDA).

The JDA model is the System for Closure Optimization Planning

and Evaluation (SCOPE). This model has been in the developmental

stage for five years. The primary developer of the SCOPE model has

been a team led by Professors John J. Jarvis and H. Donald Ratliff of

. the Georgia Institute of Technology (GTI. All future references -to

their model will be as SCOPE-GT. The linear programming (LP)

model developed in this study will be referred to as SCOPE-NPS.

The SCOPE-GT model being used at the JDA is not a -stand-

alone" model. It is a component of the Mode Optimization and

Deployment Estimation Subsystem (MODES). Furthermore. MODES is

a subsystem of the Joint Deployment System (JDS). The primary

developer of the MODES subsystem is the Computer Sciences Corpo-

F-., ration (CSC). [Ref. 1]
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Some of the problems being experienced at the JDA with the

MODES subsystem are outlined in the next chapter. Suffice it to say

that there are problems and that, due to the complexity of combined

JDS. MODES, and SCOPE-CT systems, these problems have been hard

to identifyr. A potential problem area has been identified as the per-

formance of a Benders decomposition algorithm in the SCOPE-GT

model. Problems of solution acuracy and computation time associated'

with this formulation provided the primary impetus to develop

alternatives.

The efforts to develop- new approaches were undertaken in two

simultaneous studies in the Master of Science in Operations Research

program at the Naval Postgraduate School (NI'S). The development of

SCOPE-NPS is presented in this thesis. The second study was con-

ducted by Captain Michael Lally and is presented in his thesis [Ref. 2].

The purpose of this second study was to develop an integer program-

ming formulation that would correct deficiencies in the way SCOPE-

GT represents sea transport. Initially, the goal was to have these two

efforts merge into a single model. Although each study has resulted in

an operating model, the goal of combining them has yet to be

accomplished.

The results of this study demonstrate that small- and medium-

sized deployment problems can be realistically modeled, and solved

utilizing a linear programming formulation coupled with a "variable

reduction" algorithm. The largest model tested in this study consid-

ered a medium-sized deployment problem with 35 million decision

9
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variables. The key to SCOPE-NPS's ability to solve a problem of this

size is a preprocessing algorithm which 'intelligently" reduces the

number of decision variables without affecting the optimal solution.

This thesis details how SCOPE-NPS was developed into a system

consisting of three components: the Data Input Array (DIA). the Arc

Reduction Algorithm (ARA), and the Matrix Generator, as depicted in

Figure I- 1.

Chapter 2 of this thesis provides the following background infor-

mation: a description of a deployment plan, the responsibilities of

deployment planning agenc~es. a description of the deployment plan-

ning environment, and a brief introduction to the SCOPE-GT model.

The SCOPE-GT introduction includes a discussion concerning the

decomposition formulation and some of the problems currently being

experienced.

The SCOPE-NPS model is defined and formulated in Chapter 3.

Chapter 4 presents the algorithm for reducing the number of decision

variables in a deployment problem. Chapter 5 presents the results of

SCOPE-NPS model tests and suggests several model enhancements

.5 which may be incorporated into some future studies.

10
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Formatted Data Array
Data Provides: Deployment Problem Size

Input Array Movement Requirment Data
(DIA) Lift Asset Data

Port Data
(See Chapter V)St

Arc FORTRAN 77 Program

Reduction (See Chapter IV
Algorithm Reduces the complete set of posible

,' ARA) decision-variables down to a much
smaller set of necessary variables.

Three FORTRAN 77 Subroutines

Matrix called by ARA. The MG converts the
Geatr decision variables provided by theGenerator ARA via the Mathematical Formula-

(MG] tion (see Chapter III) to the MPS
Format (see Chapter V).

11)

IF
All Movement

0 Requirements
Have Been
Accounted

MPS III
L?' Optimizer

- Figure 1. 1
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II. BACGROUND

A. DEPLOYMENT PLAN DESCRIPTION

During peacetime exercises or periods of conflict. US forces

(Army. Navy, Air Force, and Marines) must be capable of moving from

their home bases to areas of operations anyvhere in the world. The

movement of these !orces is called a deployment. A deployment may

involve moving 20 soldiers from Ft. Bragg, North Carolina, for a week

of training in Panama. or it may invoive moving 100,000 soldiers from

several US bases for the uefense of urope. Plans for these deploy-

ments may evoive over a period of years or may be conceived and exe-

cuted in a matter of hours.

The planning, coordination, and execution of any deployment pian

may be one of the most difficult of all military operations. rn the worst

case. a unit and its equipment may be deployed to a location occupied

by enemy forces. Initially, we will not have access to either airports or

seaoorts. As these facilities become available, reinforcements and

resuppiy operations must commence immediatelv. The exact :iming

and order in which units, equipment, and resupplies arrive is a key

element in insuring the success of any deployment. The development

of a deployment plan is the responsibility of The -ommander 'vfho must

execute the depioyment. The commander's plan for the depioyment

is called an "Operations Plan- (OPLAN). His schedule. once refined, is

called the -Time-Phased Force Deployment List" (TPFDL).

1.
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B. INPUTS TO SCOPE-NPS PROBLEM

For the purpose of this study, the key elements of the OPLAN and

TPFDL have been capsulized into the following essential input items:

1. Movement Requirements (MR)

%".A movement requirement constitutes an "order" for some

commodity to be transported and delivered according to a specified

schedule. Each MR's specifications include:

" MR description (passengers, bulk cargo, fuel, ammunition, etc.)

* Date the MR is available to ship

" Date the MR is required to be delivered

" MR priority

" MR size and/or quantity

" MR origin

" MR destination

2. Available Ports

Ports may be airports, seaports, or rail or truck terminals.

Ports may also be classified as Ports of Embarkation (POE) or Ports of

Debarkation (POD). Port data includes:

Port cargo-handling capacity for both loading and unloading.
This capacity is usually expressed in short tons (stons) per time
period.

-. * Port access restrictions. Seaports may only allow a certain num-
ber of ships to be in port at one time, and these ships cannot
exceed a certain size. Airports have similar restrictions.

13
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3. Lift Assets

Lift assets include: cargo and passenger planes, various types

of ships, trains, trucks. etc. Lift data includes:

" Quantity of each asset type available during each time period.

" Capacity of each asset type (stons).

* Cycle time for each asset type between two ports. This time
includes loading, unloading. refueling, and scheduled mainte-

* nance time.

Given this list of data, the SCOPE-NPS system attempts to

meet the required delivery schedule while simultaneously optimizing

the use of all lift assets.

The number of possible decision variables associated with an

optimization model of a deployment problem can be tremendous. A

realistic problem size is 500 movement requirements, 10 lift assets

(C141. C5, RORO, Breakbulk, etc), 40 POEs, 40 PODs, and 90 days. If

the model considered all possible combinations of movement request.

asset type, POE, POD, and time period, there would be 720 million

variables. It is clearly imperative for any modeling system to signifi-

cantly reduce the number of decision variables explicitly considered.

C. RESPONSIBILITIES OF THE JOINT DEPLOYMENT AGENCY

The need for a more coordinated effort between our separate

branches of service has been evidenced in every joint US forces

operation since World War II. A typical example occurred during a

recent exercise when the support operation was forced to a complete

standstill. In this case, too many planes had landed at a small airport.

14



The result was a logjam of airplanes that precluded any planes from

landing or taking off.

Another recent example occurred during the British invasion of

the Falkland isiands. While the invasion force was en route to the

4Falklands. a detailed review of the rapidly prepared depioyment pian

reveajed a major deficiencv. dthough the kev suppiv snip for ,he

invasion had been loaded with 'he requisite suppiies. he -Shio Aad

been loaded in reverse order. This discoverv resulted :n an unsched-

uled delay which required --he invasion force to offload and properly

reioad the suppiv ship.

Recognizing :hat our ability to ,onduct we il-coorainated :oinz

deployments wouid be critical in any major operation. the Joint

Deployment Agency IJDA) was established in March 1979. The JDA

was to be the single point of contact for deployment pianning and

coordination.

The Joint Deployment Agency's mission is to support rhe Joint

Chiefs of Staif LJCS) and Commanders in Chief' CINCs) ;n planning 'or

and executing deployrnents. The JDA is responsibie :r -oorainating,

the acuons or deploying units and common-user land. air, and seaiift

movements. The Military Traffic Management Command MTMC) is

responsibie 'or movement within the -ontinentai "United States. -he

Militar,, Ariitt Command MAC) for aerial movements, ana -he Militar.

Sealift Command 'MSC) 'or movement by sea. The JDA also seones as

the focal point for information associated with aepioyment decisions.

15
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* D. DEPLOYMENT PLANNING ENVIRONMENT

In analyzing the SCOPE model, it is important to recognize the

level of decision making for which it is intended. Its purpose is !o

" provide the JDA with the aDuitv Lo -assess potential depiovment easi-

bilitv pro01ems' and to assist in transportation allocation aecision

inakinia iRet. 31. 7his e.ei )I decision making is referred to as

-iosure -iann in4, and :mnust be tistinLuisne trom Jecsions c.on-

_ -erning now eacin asset is "scneduiec&" :Ret. 41. Deployment pianning

:s 'Jsuailv conducte,. in a deliberate mode. in "he de:iberate mode.

ie.,iov te.t DDL, Ns ire -ev.e'.veI. .f!ined. ana updaten .nene.'er

•n~tlthns hanLe De~no-ment pianning may also occur .n a rnlsis

-nv::ronir.ent. During a risis. aec:sions must be made and pians

selected or written in a matter ot hours. To accommodate the worst-
%'

case ,nsisi scenar:o. any modei deveoped :or the purpose of anaivz-

n, a iepiovnent pian shouid be required :o support Lhe aecsion

makers within a iour-hour time window 'Ref. 3 :pp. i-21.

E. CURRENT MODEL (SCOPE-GTI
! "" 7"l" '. r ~r),,st it 1 . t,,.-!L -i1€ '

The prmarv' rt-'searcn attempting to soive this iarge aepiov-

.. :ln,. r uie:n . )nic ro i - ean .eQ Dv ?r) iessors "onn . jar'is

S."Hi~q ' ,J ld1(: ,iii 1 .c :lr e. eul' .nsu utlle A 7-r-nnoioi.<'. urli.

4..+

i, ... ~is; :.ve" .vear5. -:ne~r -i .as ,,'n, Lo;

• f.'id~lltl¢ lt',; )VIIlt ,q, )t,;i lnil, .ri ,a crisis actionl 011,i'~ rOnl-ilent

" i rom a rnode ,nv,t e t ,f-

16
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" Assess available methodology and modeling concepts for applica-

tion to the crisis action environment:

" Develop concepts and methodology for closure optimization: and

" Develop a system design within which these models would
function.

Jarvis and Ratliff describe a hierarchy of four levels in which

the models would function. Decisions and assumptions made at the

higher levels guide and constrain decisions at the lower levels. Viola-

tions of these constraints cannot occur unless the higher level modi-

fies or changes the constraining decision or assumptions. The lower

the level, the greater the detail involved in the planning process.

The highest level is the closure planning level. The primary

purpose of this level is to aid the decision maker in developing a gen-

eral movement plan which will satisfy the military objectives and can

be supported by the available transportation system. A general move-

ment plan includes mode. POE. POD. assignment of movement

requirements. timing of movements. degree of flexibility allowed at

lower levels, and the manner in which movement requirements can be

split for transportation. The decisions made at this level are the most

important because they guide and constrain all future decisions.

The second level is the system loading/ coordination level. Its

purpose is to insure efficient utilization of the transportation system in

-~ carrying out the general movement plan developed in level one. At

this level, they search for and attempt to resolve problem areas and

develop more detail regarding movements. Additionally, it provides

information and coordination necessary for transition from the top

17
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level to the detailed scheduling by transportation operating agencies

in level three.

The third level is where detailed schedules are constructed

bv MTMC. IMAC. and MSC. These transportation operating agencies
are given specific movement requirements. suggested lift assets. POE.

POD. and the required delivery dates.

The level four system is for monitoring die development and

implementation of the deployment plan. This four-level system is a

dynamic planning system that provides for feedback, updates. and

modifications as the plan proceeds. [Ref. 4:pp. 5-171

2. SCOPE-GT Model Description

The main thrust of the Georgia Tech research has been on

level one, where the general movement plan is developed. They

decided the best way to solve the deployment problem was to use

decomposition. They broke the problem into two subproblems- a

channel configuration and a movement requirement assignment

problem. The problems are connected through a set of linking con-

straints. The decomposition method first generates the solution to

the channel configuration model. With the linking constraints fixed.

the movement requirement assignment problem is solved. The

results of this model generate a linking constraint that is passed back
'-...

to the channel configuration model. which is solved again. This pro-

cess is repeated until the solutions converge to optimalitv or it can be

stopped at the user's discretion if time is limited.

" 18
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The system the Georgia Tech team Is developing to imple-

ment this approach consists of three major components:

a. The preprocessor. which loads the applicable operations plan

into the data base. loads the movement :eq irements that sup-

port the operations pian. coordinates information. and 4enerates

* the necessary pararneters such as oorT ,'apacities. 'ift capacities.
anI Lransit Admes. .\ditionaih, the meratrons tal ,'an )e

moditieu or a brancu new plan can oe constructed.

b. The solver and SCCPE-GT model, which is discussed ,n the next

-. ~,eci~on.

he postprocesscr. -h lenerates -he utput 'hat ,an Loe

disniaved with tabuiar aata and graphics.

In the search for appropriate solvers. Georgia Tech looked for

Soiution methodologies wnich wouid be most suitable for large

.epii,,ynent prooiems. The appropriate solver would, as a minimum.

consider the :ollowlng:

*Striiture ano srarsilv of 'he depiovment net.work

'' * ,)r~mutationli S-trP'

.~ 0-4' at(J -gt q iir ents
F'C

The rnr~v ment "':r&'nent issionment )robieni has 'I nure

''"'" .. 'rk F'' .r .e'.ore w ':in e nesT ;()ved isin, i ne!%vork

-..-- ' )r -ho :inne. "t1Kir:Irior. :]de. 'he "..e1or a T-h ein"

-,,-~.i'- ,'or -'u't'vr-'qs .n h nid "' nsrranrs. he ruitmber' ';,

S,'n. r.: tints is sfrvrw irnvs Tiorf than ,his ,olver cafn effectiveht handle.

i: "tit' :r 1 , :2 "ri]l [i]," V -AwI, r) a in-ear ;)ro)gram . i '(er z" zho

19
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future. The two problems are linked together with Bender's decom-

position method. [Ref. 4 :pp. 44-541

3. Current Model Deficiencies

The current model is experiencing several problems. it takes

a long time to converge and at times will not converge to the optimal

answer. While on experience tour at JDA in November 1986. a small
Se..

test problem was submitted to rhe current model and it produced an

obviously subopumal answer. in this small problem. every movement

requirement was available to be shipped during the first time oeriod.

.\I :ransoorration assets were also ivailable during he first -ime

period m a could easily ,wc'e between the ?OEs and PODs in one time

period. However. the required delivery dates for each movement

request were during the first time period. An obvious optimal solution

would have been to begin deliveries during the first time period.

However, the SCOPE-GT soiution did not make its first delivery until

the third time period. Research is continuing in an attempt to dis-

cover the source of the convergence problem.

The current modei takes )ver !ight hours to solve medium-

size deplovment probiems. This ,s not fast enough for crisis planning.

Current research is investigating a "hot restart" capability, aggregation

)t' movement .efuirements. suboptimal stopping rules. i method :o

l en'.erate irrs is 2.eded. ind -ire reduction methods,

, A third area ,t c!ncern ;,s the method of modeiing sealift.

The model assunuts i continuous flow rate. The associated channel

20



concept can best be understood by likening the channel and its

capacity to a pipe with water passing through it at a given flow rate.

The Georgia Tech research team makes a good argument for

the channel concept and continuous flow rate when applied to airlift.

The airlift cycle times are relatively small when compared to the time

horizon and the delivery effect is 'smoothed" over time. However.

they try to apply the same argument to sealift. The following example

shows how a continuous flow rate makes sealift appear unrealistic.

Consider a ship with a capacity of 10.000 stons and a ten-day cycle

time between two ports. The continuous flow solution would allow

this ship to make ten consecutive 1.000-ston deliveries instead of one

10.000-ston delivery. The users of the model do not want cargo

-flowing" through seaports. They prefer discrete shipments. Discrete

shipments more realistically portray ship departures and arrivals.

[Ref. 51

After a six-week evaluation of the SCOPE-GT model. Captain

Lally and I decided to take a new look at the problem and determine

alternate methods that could be used to solve Ghe deployment

problem.

As stated earlier. Captain Lally chose to develop a model that

can be used to allocate strategic sealift resources. His research shows

that integer programming with vaiable reduction methods is a viable

approach to solving the sealift allocawrn problem. This study focuses

on a linear programming model designed tu: (1) determine OPLAN
- .-

feasibility, and (2) opt.,mallv allocate air and sea ii,- ?ssets.

21

6N%

, . 2~ 1 ~. ~ * . -~



M. MODEL DEVELOPMENT AND DESCRIPTION

A. MODEL DESCRIPTION

The deployment model is a multicommodity capacitated trans-

shipment problem (MCTP). These problems occur in many forms and

fall into the class of minimum cost network flow problems [Ref. 61.

Assad [Ref. 71 and Kennington [Ref. 81 discuss the MCTP and the vari-

ous methods which have been developed to solve them. A description

of the minimum cost flow problem along with the node-arc formula-

tion is given by Bradley. Brown, and Graves [Ref. 91 and Bazaraa and

Jarvis [Ref. 10]. In most cases, the purpose of these models is to

minimize shipment cost. In the current context of deployment sce-

narios, minimizing shipping cost. or efficiently utilizing assets, must

be balanced against the strict adherence to a time schedule. If this

time schedule cannot be met, the solver should identify which move-

ment requirements can and cannot be met. It should also provide

informaticn as to where additional resources (ports, planes, ships,

etc.) can be most efficiently allocated to make the problem feasible.

In a deployment problem, timing is critical. This requires repre-

senting each individual movement request as a single commodity. All

commodities must share the same set of assets, so they are bound

together by the presence of joint capacity constraints. These joint

capacities preclude the use of pure network solvers. However. MCTP

still possesses a block diagonal structure which lends itself to
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decomposition. Bazaraa and Jarvis [Ref. 10:pp. 492-494] provide a

description of the coefficient matrix and its block diagonal form and

discuss how it lends itself to decomposition.

| The major approaches to decomposing these large problems were

formaiized in the Dantzig-Wolfe decomposition principle 'Ref. 10:p.

351] and in Benders decomposition method [Ref. ii: Ref. 4:pp. 44-

541. As described earlier. SCOPE-GT utilizes a formulation basedI on

Benders decomposition.

A guideline of this research was to restrict the approach to linear

programming formulations which could, in reasonable time. provide

feasible. usable solutions without decomposition or other advanced

algorithms. While a direct LP approach may not handle the largest of

deployment problems. such as multitheater planning, we believe it has

the potential to solve the great percentage of plans which fall into the

small or medium size categories. Moreover, if the viability of this

approach is demonstrated, then the development effort required for

operational implementation is substantially less costly and risky than

the decomposition approach.

The linear programming model presented in this thesis incor-

porates the following key attributes of the deployment problem:

* Provide gross feasibility estimates
* Minimize deviations from reauired deliverv dates.

"p..

* Minimize shipping cost (minimize shiping time on cheapest avail-
able asset).

* Select mode of transportation.
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9 Represent sealift more realistically.

e Provide for prioritized delivery of movement requests.

• Observe port capacities.

- Observe lift asset capacities.

Provide for an elastic/feasible solution (see the next section for an
exlanation of this attribute).

* Solve realistically sized problems.

B. MATHEMATICAL FORMULATION

The basic model is presented here in a node-arc formulation.

The classical formulation has been augmented mvth the requisite :ift

asset and port capacity constraints.

Indices:

r = Movement requirement (commodity).

a = Lift asset type.

i~j = Ports of embarkation and debarkation (source, destination, or
. transshipment nodes).

t = Time period.

Data (grouped by category):

Movement Requirement Data:

ALD(r) = Time period movement requirement r is available
to load.

RDD(r) = Time period movement requirement r 4s required
to be delivered

MD(r,t) = jRDD(r) - ti + 1. The number of time periods by
which movement requirement r would miss the
required delivery date if it arrived on day t
(Derived Data).
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AL(r) Number of days movement request r may be deliv-
ered late. This parameter has two purposes: It
defines a constraint and it assigns priorities to
MRs.

Supply(r,i) = Quanuty of movement requirement r (stons) pro-
vided at POE i.

Demand(r,j) = Quantity of movement requirement r (stons)
required at POE j.

IS(r.t) = lif t = ALD(r)
I 0 otherwise

ID(r.t) 1 if t = MIN(RDD(r) + AL(r), NDAYS)
1. 0 otherwise

" Lift Asset Data:

CAP(a) = Lift capacity (stons) for a single lift on asset a.

Q(a.t) = The number of type a assets available during time
period t.

UR(a) = Utilization rate (percent of time period available)
-'V for asset type a.

- AC(a,i.j) = Cycle time (time periods) for asset type a to com-
plete a round trip between POEs i and j. This time
includes loading, reft- 'ng, and offloading.

TT(ai.j) = Travel time (time periods) for asset type a to com-
plete a single trip from POE i to POD j. TT is
rounded up to the next time period. This pre-
cludes a movement requirement from making two
legs of a trip in one time period. Tr = 1 + CEIL
(AC(a,i,j)/2)

SHIPIT = Time period multiple on which ship arcs may be
used. (See Paragraph C.1 in this chapter for a
description of SHIPIT and its use.)

C (a) = Cost factor. C(a) is a scaling factor used to rank
order the cost for using various asset types. C(a)
would be high for airlift assets and relatively low
f(;,- other asset types.
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Port Data:

E(i,t) = Throughput capacity (stons) of port I during time
period t.

NDAYS = Number of time periods in the model.

Decision Variables:

X(r.a.i.j.t) = Amount of movement -"quest r (stons) sent via asset a
from POE i and arriving at POD j during time period t.

S(ri.t) = Amount of movement requirement r (stons) remaining
at POE/POD i at the end of time period t.

Model:

i*: : MIN . x (r.a.i.j.t) * ((AC (a.i.j) + C(a)) + MD (r.t)) +
r a i j t
a E aircraft

x' Y x.(r.a. i.j,t) * ((AC (a.i.j) * C(a)) + MD (r.t)) +
r a 1 ta E sealift/overland

Y, Y, I I Y, x (r.a~i~jIt) * (AC (aij) * C(a)) (1)r a i J t

a = elastic asset

Subject to:

- x (ra.i.jt) < CAP(a) * Q(at) * UR(a)/AC (a.i.j) (2)
r i

for all a. t.
-d,,,,*,
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X x(r,a.j.i,t) -x(r,aijj,t+TT(ajij))

+ SUPPLY(r,i) * IS(r,t) - DEMAND (r,1) * ID(rt)

+ s(r.i.t-1) - s(rit) = 0 (3)

_-.,
for all r ,t

__ x (r.a.ij,t) < E(i.t) (4)

fbr all j, t.

r a j

:or all i. t.

x(r.a.i.j,t) >_ 0 (6)

for all r. a. i. j, t.

s(r.i.t) > 0 (7)

for all r. i. t.

It is very important to recognize the form of the decision vari-

ables. x(r,a.i,j,t) is not a discrete "plane load" of movement require-

ment r being shipped from i to j. x(r,a.i,j,t) and s(ri,t) are continuous

variables that represent a flow rate/time period of commodity r on

asset a from i to j. The advantage of this representation is a greatly
- reduced number of variables. If asset a could cycle between i and j five

times in one time period, then five discrete variables would be needed
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instead of one flow rate variable. The use of discrete variables would

also require an integer formulation. Integer programs are much more

difficult to solve and would place a substantial restriction on the

number of decision variables which could be incorporated into the

problem.

There are, however, two disadvantages to utilizing flow rate vari-

ables. In a small problem with only one time period and only one

asset, you may establish two, three, or even more small flows from

several ports all around the world. Obviously. this solution could not

be executed and would not be acceptabie. As already explained.

deployment problems are not small problems. In a larger problem. it

is assumed that a planner or ship scheduler would have sufficient

assets to reasonably accommodate the flow rates established by the

solution.

The second disadvantage is due to the different cycle times asso-

ciated with air and sealift assets. Usually, time periods are kept short

in order to maintain a reasonable resolution on air assets and their

flow rates. There are usually many planes associated with a depiov-

ment plan. This makes it easy to visualize how these assets could be

dispersed to meet the demands of the flow rates that have been estab-

lished. Relative to air assets, however, there is usually a very limited

quantity of seaiift available. Just as in the small problem hypothesized

above, the ability of a scheduler to apportion actual assets against the

many possible flow rates can be disconcerting to the model user. The

flow rates are also acceptable for modeling planes because planes

28
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would actually be making deliveries during each time period. Sealift.

on the other hand, would only be making a few deliveries during occa-

sional time periods. This representation of sealift is not realistic, as

/ "boat loads" appear more like "pipes." A method of lumping these
sealift flows called -spiking' is discussed in the next paragraph.

1. Equation (1)

The objective function is a multiobjective function. It can be

broken down into two cost components: Delivery Cost (DC) and Ship-

ping Cost (SC). The primary purpose of the objective function is to

penalize deliveries as they vary from the required delivery dates. This

penalty is assessed by the Delivery Cost component. The second pur-

pose of the objective function. subsequent to the first, is to select the

most cost-effective means of shipping the movement requirements.

This cost is assessed by the Shipping Cost component. The complete

objective function is the sum of these two cost components. Total cost

(TC) = DC + SC.

a Explanation of Delivery Cost

DC = x(ra.i.j.t) * MD(r.t)

Delivery Cost is the product of x (r.a.i.jt) (the quantity of

a movement reauirement r delivered during time period t) and

MD (rt). MD (r.t) = I RDD(r) - t I + 1 represents the number of days

the delivery missed the required delivery date (RDD(r)).
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b. Explanation of Shipping Cost

SC = x (r.a.i.j.t) * (AC (a.i.j) + C(a)) for all air assets

SC = x (r.a.i.j.t0 (AC (a.i. J * Cia)) for all non-air assets

SC = x (r.a.i.j.tl * (AC (a.i.J) * C(a)) for the elastic asset

Shipping Cost :s based on two factors. The first factor is

cvcle urre. AC ,a.i.j) is the cycle time required for asset a to complete

a round trip between por-,s i and j. If a C 141 cargo jet's cycle time is

less than that of a C3 carglo .et. then *-he C141 is considered a cheaper

asset to use. Thlls method of differentiating asset cost is adequate as

long as we are comparing cost of similar types of assets. On the other

hand, it is not immediately applicable to comparing sealift assets.

.which have relatively long cycle times, with airlift assets. The second

factor affecting Shipping Cost is C(a). C(a) accounts for these differ-

. ences in cvcle times. C(a) is a scaling factor which is used in the three

equations for SC given above. Note that C(a) is added to AC (a.i.j) for

all air assets and is multiplied times AC (a.i.j) for all non-air (sealift.

trains, etc.) assets. While this algebraic manipulation may appear odd

at first, it provides a straightforward means of -tuning" the optimal

solut-ion to meet the desired trade-offs between expensive airlift and

the cheaper transportation alternatives. Figure 3-1 depicts. in a sim-

plified manner, the cost relationships between delivery dates and

delivery mode. In this example. C(a) for air assets has ben set to 3.0.

and C(a) for non-air assets has been set to .00 1.
5..

*15"*%30
'

A;:. . . . . . .... . .,.. ....... . . .... . .... .- .,:- . , . , ,



* I

Total 7 4
, Cost/Unit
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4 -- ---- -- .C AIR

3 L TC Seaiift

0 1 2 3 4 5 6 9

RDD(ri -

t = actual de!ivery ate

Figure 3-1

Cost Function

As Figure 3-1 shows, a delivery by train or ship could miss the

required delivery date by approdmately three days and still be cost

e,ffetive when compared ,o an air shipment that arrives in the exact

,_ ate required. This ability :o sensibly balance alternate means ;)i

delivery air vs. sealift) is the essential element of proper mode

selection. Figure 3-1 also shows how MD(r.:) Iuickly becomes he

. !ominant .actor :n -he Toal a st ,TC", euation. Tis result .s

consisTent with -he pnmarv purpose of :he objective tuncuon.
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/c. Explanation of Elastic Shipping Cost

The purpose of the third SC equation is to provide any

deployment problem with a feasible solution. This technique is often

called in -elastic" or -sott" constraint IRet. 121. in this :rua~n

Lhere .s an unjimrited number )'n vuorheticai eiasnic assets aivailable -o

iranstport any crmmedit, r ,rom io 1at an e xorbitant onice. C-al "or

Lie -iasric -isses 'nas j.een -;e, ro 1000O. This v.erv i ign reltive '()ST

.actor insures that tnastic assets are used only as a l1ast resort. Without

-ne e~asiic var~abies. the L? solver would terminate :n in ",nfeasibie

orcblem. 'rieicini4 'ittle ;r -io niOrmati1on how -o !'LX the :nfeasibhtv.

. EQuation 2)

This constraint ensures that the daily capacity of each lift

asset is not exceeded. The oroduct CAP(a) * Q(a.t) * UR~al (caoacitv

cuantir; utilization rate) determines the maximum quantitv tstonsi

that can be transported in a single trip by asset type a. When this lift

capacity is divided by the cycle time AC (a.i~j). we determine the

mnaxirnum itlow rate- for e-ach asset. :rom ito j. for one -ine oeriod.

> Zoiiarion 3)

This is he set of' :low balance equations. They define "or each

moverient request a single commodity network. The flow balancfe

crquationis :nsur- -hat he 9ow otf m~~vovement request -into node

.s e'iual o h- low .4f M\R ou~t of nooI i !'or arv given time oero(.

Fioi.:re shows -he- :ltw :-omponents o)f movement requirement r

into .id (Aut of node i durino rime period t. The problem of ensiirin

that siippiies and -emands are ,n Ibaiance is a simple one in the

32



s (r.l.t-1)
* Supply rk.I

Supy .I Demand frAil

ALD~rjt = MinINDAYS. RDD(r AL(r)

:', a..t+TT)

1 {s(r.i1.t0

Figure 3-2

Flow Balance About a Node

-deployment transportation problem. Since supply and demar.d. for a

specific movement request. are prescribed quantities, supply will

always equal demand. It is also known that the supply of r will enter

the network during time period t = ALD(R). and that movement

requirement r will exit the network during time period t =

Min[NDAYS.RDD(r) + AL(r]).

4. EQuations 4] and 5)

These constraints insure that the daily capacity of each port

is not exceeded. The sum of all shipments made from POE i and to

3
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.,

POD j cannot exceed the quantities E(i.t) and EU.t), respectively.

Vduring any time period t.

C. FORMULATION ENHANCEMENTS

. 1. Spiking Sealift

To provide for a more realistic model of sealif. :he set of

- possible shipping "lows must be modified. A simple example is pr(o-

vided to show this need. Consider the requirement to transport

10.000 stons from i to j on a sealift asset (type a). If the cycle time for

asset i were 10 lays iAC ia.i.j) = 10). the 10.000 stons would appear

at j as 9 daily )e:venes of 1.000 stons each. As we have previouslv

*discussed. this representation is not realistic and makes sea deliveries

appear more like pipes than ships.

Since the preferred integer solution to a problem of this size

cannot be obtained, a technique called "spiking" sealift was developed.

This technique is used to consolidate the deliveries into a reduced

subset of time periods in which sealift could be used. This feature is

controiled by the variable SHIPIT. If SHIPIT is set to five. then seaiift

deliveries can be made oniv during every fifth time period. This would

result in the previous example of 10.000 stons being delivered in two

shipmiients instead of 10.

h. . e zechniqlue . 'spiking' :he sealift flows must be used

carernlIiv and the modeler must be aware of its shortcomings. The

most iotable shor,'omling is the loss of solution flexibilitv. The fin-ii

solution can only provide sealift deliveries on every fifth day,. even it it

were physically possible and more cost-effective to make a delivery

34
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during another period. Although a more realistic representation of

sealift is the primary purpose of spiking, it also serves to reduce the

number of sealift decision variables which must be considered. F:gure

:-3 shows both effects of soiking sealift !lows.

2. Priorn.tizin ; Movement Recuirements

.k second enhancement is thar ot 'rritizlng "he ie-ive-v 4

,. :lcarvi t miilremenr ts. MIovementr -equirie,- - rnori ire

established bv adjusting the ailowabie late 'actor 'ALIr) for oach MR.

*,f. :or exarnle. we want to place a hioh orioritv on movement

-,.:remrent - .ve -an set ALr: 0 0. No solution "oill allow ',IRr; o

oe :e~ivered tare. A lower )riontv results when -igher vaiues )f kLr

- are assigned. The 'ast aav n the problem tNDAYSI will of course

overFde the allowable late :actor's ability to let MRs be delivered late.

A iarer value for ALirl will also provide the model with a more flexibie

-number of time periods in which to find a feasible solution. The cost

• " of this flexibility is the addition of more decision variables. The effects

4" aiter-.ate ALrl values :s depicted in Figure 3-4.
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(rt=2 xa.i.j,2+T

"PDe low' 'Spiked flow"

'SHIPIT = 2)

Figure 3-3

"Spiking" Sealift Flows

Low Priority
, U 'More VanabresL

High Priority
xIr.a.1,4) (Fewer Varlabies)

x•r.a. ,4)

j,4 t -RDD=4

4 ... Demand

t - RDD(r + AULr =5

RDD(r = 5.. x(r.a.:.;,6 I hI -0

Deranco

" -" : -R D D~ ld A L ~ r , 6
RDDI r -4
ALd

Figure 3-4

Prioritized Deliveries
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V. REDUCING THE NUMBER OF DECISION VARIABLES

As previously defined, the optimization model includes two types

of decision variables: Shipping variables, x (r,a.ij,t) e X and Inventory

variables s (r,i,t) F S. The domain of X potentially contains r*a*i*jt

variables. Likewise. S would include r*i*t variables. In the example

already mentioned with (r,a.i.j,t) = (500,10.40,40,90). there are in

excess of 720 million decision variables and 2 million constraints.

These dimensions for (r.a.i.j,t) correspond to a medium- to large-

sized deployment problem. Even larger numbers may be encountered

* in practice. Clearly, a straightforward approach to a problem of this

size would not be feasible.

This chapter presents the development of an algorithm which is

designed to greatly reduce the number of variables found in deploy-

ment problems like the one described above. Since a decision variable

is analogous to an "arc" in a directed graph, the algorithm to be

developed has been entitled the Arc Reduction Algorithm (ARA).

This chapter is organized into three sections. The first section

presents the design of the ARA along with the criteria it uses for

reducing the number of decision variables. The Arc Reduction Algo-

rithm is presented in pseudo code in Section B. Section C explains

how the Arc Reduction Algorithm and deployment problem input data

are both used to generate the final (reduced) set of decision variables

that represent the transportation network.

'S.,
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A. DESIGN AND CRITERIA FOR AN ARC REDUCTION

ALGORITHM

1. Design

A "path" from node s to node u may be defined as a

sequence of arcs" Psu = (s,a). (ab), (b,c), ... , (e,f), (f.g). (g,u)} [Ref.

10:p. 406]. Each of the arcs in path Psu corresponds to an element of

X or S. the two sets of decision variables.

In the context of a deployment problem, Figure 4-1 shows an

example of two possible paths for a movement requirement. Path 1

contains five decision variables (arcs) but path 2 needs only one deci-

sion variable. Any solution to a deployment problem must provide at

least one path for each movement request r from node POE(r) to node

POD(r).

The design for the arc reducing algorithm is to attempt a

delibcrate search for at least one "good" path from s = POE(r) to u =

POD(r) for each movement requirement r. Then, decision variables

x (r,a.ij,t) or s (r,i.t) are retained for the optimization only if they have

been associated with some good path. This search procedure is per-

formed independently for each movement request r, one at a time. A

common approach to organizing such a deliberate search is the

"Depth-First Search" (DFS) algorithm [Ref. 14].

The purpose of the Depth-First Search (DFS) is to efficiently

visit the vertices and arcs of a directed graph in a systematic, step-by-

step (arc-by-arc) fashion. The technique is called depth-first because

it continues searching deeper (in the direction away from the starting

node) for as long as p issible [Ref. 14:pp. 215-2161. Figure 4-2 shows

, 38
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.Acyclic Graph After DFS

-F- an acycl.ic directed graph whose arcs have been labeied In the
sequence they would be visited during a DFS.

~The ARA presented in the next section utilizes the DFS tech-

".'':nique to seek out paths from s to u. Once a complete path has been

J..2-.

~found, each of the decision variables contained in the path will be

-4 40
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identified and retained for the optimization. The ARA algorithm does

not need or attempt to find all paths from s to u. Such an exhaustive

search would not provide any additional information.

The ARA utilizes this fact to its advantage in an effort to

increase its efficiency. Let (ij) represent an arbitrary arc. The ARA

will generate every possible arc leading into (i.j). Two conditions may

exist when the DFS reaches (i.j). Either (ij) has already been included

in a complete path from s to u or (ij) has never been included in a

* complete path. If (ij) has not been included in a complete path, then

the DFS will continue deeper in an effort to do so. The search along

this path. which includes (i.j), may or may not ever complete a path to

u. If it does, (ij) will be retained for the optimization. If, when the

DFS reaches (i.j), (i.j) has already been included in a complete path.

then the DFS does not have to go any further. The path leading up to

(ij) can be combined with the previously established path from (ij) to

u to form a new complete path. The fact that we do not have to

proceed deeper on completed paths contributes greatly to the

algorithm's efficiency.

If, after approaching (ij) from every possible origin, we have

yet to include (ij) in a complete path. then we can conclude that (i.j)

should not be retained for the optimization. It is important to note

that (i.j) was given every opportunity to be included in a complete

path. This distinction becomes a requirement when we assert that we

have not inadvertently precluded any decision variable from a possible

optimal solution.

'4 41.
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'N' This assertion is an important feature of the ARA. In other

* words, if the ARA has accounted for every required decision variable,

then every possible path from s to u has also been found. If every pos-

sible path has been found, then the optimal solution has not been

affected by our reducing the number of decision variables which the

optimizer may consider.

2. Criteria For Reducina the Set of Arcs (Decision Variables)

While the DFS procedure will systematically provide us with

the requisite paths from s to u. the following set of "acceptable crite-

ria- will determine if the path Ps. is a -good path":

a. Psu must insure that movement requirement r was not picked

up before its available -to -load date (ALD(r)), or delivered after

its required delivery date (RDD(r)).

b. The aircraft arcs belonging to Ps, should not exceed the direct

route distance from s to u by more than a reasonable factor. In

the current model, this factor is an adjustable parameter which

defaults to 1.50.

c. Along path Ps., the number of times an aircraft is loaded or

unloaded should not be excessive. In the current model, this

factor is an adjustable parameter which defaults to 3. (It can be

* -. different for cargo and passengers).

d. Path Ps, should not return to the POE at any point after it has

departed the POD.

e. Path Ps should not leave the POD once it has found it.

4.2



B. ARC REDUCTION ALGORITHM (ARA)

1. Pseudo Code

The following is a simplified set of variables and data used by

a pseudo code to represent the arc reduction algorithm.

Define:
Sets:
MR = set of all movement requests. indexed by r.
A = set of all asset ,pes. indexed by a.
V = set of all netyork vertices ports). indexed 1v v.
T set of all time periods. indexed by t.
E = set of all edges dec.sion variables).
GA = set of 'good arcs' (arcs that have been inciuded in one or

.4. more paths Psu and retained for optimization).
Data:
.3 = :nitiai vertex ;POE(rl); s F. V and s = ?OE(ri for current -
u = Destination vertex (POD(ri): u P V and u = POE(rj for

current r.
TT (a.i.j) = Travel time from i to j on asset a: T = 1 if i = j

(represents storage variables).
ALD(r) = First time period r will be available to load.
LDAY(r) = Last time period r may be delivered.
Variables:
i = Tail of the current arc: i e V.
j = Head of the current arc: j E V.

* (i j) = arc connecting i to j; (ij) e E. This arc or decision
variable may represent either an inventory arc-
s(r.i.t), or a shipping arc-x(r.a.i.j,t.

P.u = Path from s to u (represents a complete path. not
necessarily unique, from POE~r) to POD(r).

Psi = Path from s to j, s.t. Psj = Psi U (i.j) (represents the
path being built).

Piu = Path from i to u, s.t. Piu = (i.j) U Pju (represents a
previously established path from the current arc Ji.J
to the destination at u).

d = Depth of Psi depth = number of arcs in the path).

Pred(d.k) = Predecessor arrav (a vector of length k. for each 1.
,which contains the information required to

"backtrack" along Psu or Psi).
Functions:
ACCEPTABLE (Psi U (i.j)) = TRUE; if the new path. Psi U {i.j). meets
the criteria specified earlier in Paragraph A. 1. of this chapter.
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Arc Reduction Algorithm:
-_ input: G = (VE). a directed acyclic graph (not necessarily con-

nected); POE(r) the initial vertex: POD(r) the destination
vertex: T'(a.i,J). edge length cost/travel time.

OUtDUt: GA: List -f all arcs which were at )ne oint :nc!uded :n
any- .iuV

beglin

• begin. =.s=PQ ' ' -VALDr,. := .'SIr!

, . ,P ° u = 0 1 . P , = 1 P! , ' u  = (

Next-V: for v e MfV
begin

i --- V
J

:or i E A
.. e gin jfl

i ACCEPT.BLEIPjj Ui.Jj~ add arc i. o

'=j

if i - u or Ps, U Pu -Psu spath from s to u is complete)
begin

GA = GA U (i.j) for I' ii.j) e Psu
(i.j) = PRED(d.k)
d = d - 1 [backtrack on P-u)
go to Next-v

end
else

ncI
end

end
if d> 0

begin
i.j) = P-ed(d.ki

j = d - fbacktrack on P.,I or Psu;
go zo Next-,d

end
else
end

P end
end

...
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2. Data Structure Used to Implement Arc Reduction Algorithm

- a Preordered Traversal of the Graph

Because the deployment problem is very structured, it is

possible to systematically generate the arcs required in the depth first

search onlv as needed. The ARA above depicts the cyclic structure of

this search and now the arcs are generated. This arc generation tech-

nique is ised instead of a hierarchical adjacency list.

While this technique may appear crude on the surtace. it

may be as good as any other alternative to preordering the search.

Clearlv. .f zhere were oniv one commodity to be shipped. then an adja-
,-I.,

cencv list could be generated that would be much more efficient than

the iterative routine being used here. It would, however, be a difficult

problem to develop a single adjacency list that would account for dif-

ferent POEs, PODs. ALDs. and RDDs for each commodity type or

movement requirement. The simpler alternative, which would gener-

ate a new adjacency list for each movement request, would certainly

prove to be more time-consuming than our iterative generation

technique.

b. Storage of Good and Bad Arcs

*Each time the ARA attempts to add an arc to the path it

is building, it is necessary to classify that arc as being good or bad.

Three operations/situations complicate this task.

The first problem is encountered when you immediately

classify an arc as being good each time a "step forward" is taken.

Obviously, if the path never reaches the correct destination, then time
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4. must be taken to remove and reclassify one or more arcs as we back-

J track along the path. A common technique used to maintain this type

of changing list is the "last -in -first" -out- (LIFO) stack [Ref. 14 :.p. 21S1.

The ARA saves a portion of the time that would be required to -pop-

* (remove) arcs from this stack by not immediately classifying each for-

ward step taken as a good arc. Instead. these arcs are maintained in

* the predecessor array and lagged" when the path actually reaches

the correct destination. All the arcs that have been flagged are then

added to the -good" list of arcs. This procedure eliminates the

requirement to ever remove an arc from the good list of decision

variables.

4 The second complication occurs when the current path

being built determines that an arc that was previously classified as bad

may now be acceptable. Neither a LIFO or a FIFO stack would help in

correcting this reclassification. The arc in question could at this time

- be anywhere in the stack. The simplest means of removing this arc

from the bad stack is to delete it and replace it with the last member

of the stack. This procedure was used and should be faster than

updating the pointer to every arc below it in the stack.

The third problem is also related to managing the stacks

of good and bad arcs. Each time the ARA attempts to take a forw~ard

step on an arc, it must search the two stacks to determine if they have

been "visited- before and how they have been classified (good or bad).

The stack of good arcs also has to be searched during each back-

tracking step. Since these stacks will be searched o(JIV 12 1 A1 I R
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ITI) times, the program runtime will be influenced greatly by the

length of these stacks. We are fortunate that. once the search has

terminated for each movement request. we can store the good arcs in

a separate file. All the stacks can then be purged prior to starting the

next search iteration. If only two stacks were maintained. .ve would

still be ireatly influenced by their length. To reduce the 'engths rr

.hese stacks, a 'bucketing classification) rechnique was used to .tis-

perse both the rood and bad arcs into many smaller stacks [Ref. 14:n.

1221. A good and bad stack was created for each node in the network.

Since rhe ARA :viwavs nows its location in -he network. !t an :iire,,lv

access the approonate stack.

One additional step was taken to save storage space for

these stacks. Since the inventory arcs have onlv two components ver-

sus the shipping arcs' four. space can be saved by further breaking

down the stacks into these two categones. By doing so we have also

once again reduced the length of each stack. As a result of this stack

- partitioning scheme, we must keep track of 4 * IVI individual stacks

and stack counters. This data storage technique assists greatly :n

reducing program rn time since any stack we must search will cer-

tainly be a relatively short tack.

C. NETWORK GENERATION

The network of transportation links is established in two phases.

During the first phase. the modeler constructs the 'physical" network

- -  by means of a -linking" array. This array is the AC (a.i.j) data array

described in the mathematical formulation. The AC (a.iJ) linking array

.%-4.
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senes two purposes in this tormulation. The first purpose is to iden-

tifv those transportation links (physical network) which will be

allowed to exist in he rnod el. The second our-nose. -is was !r-su'r

n the :a-rmuliat:,n. s -,, *stablish the o sT :or .,,st "

movement -eq]u:renitnr r (rni to . e linka1 irrav h1as " :2::

-P
; '-.IP , -'..o n e :o r t,,,c h P o~rt. .in d n sie ts )t i_ " ro w s 'a 1LI Iu D e r 1 1 s ~ , .-) .

"." 7 -ie i'" row .,I . e - {e s ,i]e v c".(.r t .".c!-. ,time '4";stl .F ! ,

as it eaves the n o rt. The a-,I st row .n each set is . -i rm .- :: ,

(iST3ItnCe beT-.vetu "ur- and oort i. Anv ratio scale. such is rn:4es

.etw t,,n : anc : i n n te iseo :or ,Iis 7ournose.

_ Positive AC a.,. 'aiues -stablish an actual *ransnoraxon 1K Kr

asset a between oorts i and ,An etxamole such as AC iC-4>

York. Frankfurt) = 1.4 would indicate that the ootimizer should cn-

" sider transPorting movement reouest on C 141 cargo lets frora \e,.v

York zo Frankfurt at a cost of 1.4 time periods. The array value for AC

(Container Ship. New York. Denver) would on the other hand be set to

zero.

W hen "'hsiructnc h~s 'inkini arrav. -he .,oiele: -n use )'n- 'I

.wo approaches. in the first approac. which may be :iciicahie ,)

planning in a crisis mode. the modeler could simply Oxtract his

AC "a.:.') linkin4ml rav :'r'm i iata base. !n this .-nse. -he irro, 'voui,:

have a "ositive value :' or .e.v a.i,)) combination -hat is ]C'',ilv -?oss;..

"hie. The -1d'anTtae "o this approach is that 'he mode e"e does nat ,

to have much detailed knowledLe abut the plan and it ,e ildl red ir,
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very little time. The disadvantage is that the optimizer must now con-

sider a great many more transportation links than may be required.

In the second approach to creating the AC (a.i.j) linking array. the

-~ modeler is more selective in what links are established. When more

time is available and the modeler is more familiar with the deployment

plan. the AC (a.i.j) array will contain fewe~r non-zero elements. This

will make the size of the coefficient matrix smaller and the iob of the

optimizer that much easier.

Phase two in creating the transportation network is a much more

complicated process. During this phase. the Arc Reduction Algorithm

is used to extract from the physical network created in phase one only

those links that have been classified as acceptable.

The second phase of generating the network is accomplished

during each major iteration of the Arc Reduction Algorithm. A major

iteration of the ARA is complete when every attempt has been made to

associate each decision variable with a -good" path from POEMr to

POD(r) for a particular movement request r.

At this point in the algorithm. a list of good variables which are to

be used by the optimizer has been established. The next step is to

insure that each of these variables. along with their corresponding

coefficients and constraints, is placed into the Mathematical Pro-

gramming System format (MPS). This is accomplished by calling each

of three subroutines (ROWS. COL, RHS) prior to purging the list of

variables and restarting the algorithm for the next movement request.
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V. RESULTS AND CONCLUSIONS

This chapter describes each of the components that have been

developed for the SCOPE-NPS model and how they operate together

-, as a svstem. The two other systems used for development and imple-

mentation in this study- GAMS/MINOS and the optimizer MPS II- are

also briefly described. The third section of this chapter presents the

results of the testing and validation phase of this study. The final two

sections of this chapter present some conclusions and recommenda-

tions for future developments.

A. MODEL COMPONENTS

The SCOPE-NPS model consists of three components: the Data

Input Array, the Arc Reduction Algorithm, and the Matrix Generator.

The ARA reads the Data Input Array and begins the iterative process of

finding all the good paths for each movement requirement. At the end

of each iteration. the Matrix Generator is called (as a subroutine) and

the problem is converted to an MPS formatted file. When the paths

for each movement requirement have been found through this itera-

tive process, the work of the SCOPE-NPS is complete. The SCOPE-

NPS output file is in the MPS format and can be solved by any linear

programming system that reads MPS files. The solver selected to

support the SCOPE-NPS was the MPS III Mathematical Programming

" System developed by Ketron Management Science, Inc.. for use on

"' IBM mainframe computers [Ref. 151.
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The SCOPE-NPS model formulation was initially developed and

implemented utilizing GAMS/MINOS. GAMS/MINOS is a software

package consisting of GAMS. the General Algebraic Modeling System.

and MINOS, the Modular In-core Nonlinear Optimizing System [Ref.

-" 16]. The GAMS language allows the modeler to enter his LP/NLP/MIP

model in an algebraic form. The user must specify each of the sets.

parameters, and variables for the model, but he only needs to enter a

single statement in GAMS language for each type of constraint or rela-

tionship. The GAMS compiler will, in turn. generate the entire set of

required equations when they are needed. This arrangement frees the

modeler from the tedious work which is required to develop and

'"  revise a matrix generator. Although the formulation was developed on

' an IBM PC. final model testing was conducted on the IBM 3033 main-

frame version of GAMS/MINOS.

The ARA and Matrix Generator were developed and implemented

on the IBM 3033 AP computer operating under the CMS operating

system. The ARA is written in approximately 600 lines ANSI

FORTRAN 77 and compiled by the !BM VS FORTRA.N compiler. An

additional 400 lines of FORTRAN 77 code was required to program

the three Matrix Generator subroutines.

-. Data Input Arrav (DIA)

The DIA is a formatted array which can be divided into wo

parts. The first part provides information concerning the size of the

-. deployment problem. The information contained in this section

.ncludes: number of movement requests, number of asset types.

15
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number of ports, number of days In the problem, number of aircraft

types, and number of boat types.

The second portion of the DIA contains the following

-- parameters and data list: air transport cost coefficient, land or sea

cost coefficients, maximum number of planes allowed in a single path.

fraction of a direct route planes may fly on a single path. time period

multipie on which ships may be used. movement requirement data.

port capacity data. lift asset data. and cycle time cost (AC (a.i.j)).

2. Arc Reduction Algorithm

The ARA reads the problem size specifications and physical
, ,. network data from the Data Input Array. As discussed in Chaoter IV.
@

the ARA then proceeds to identify a reduced set of decision variables

- which are retained for the optimizer. The ARA is run one time for

every movement requirement in the problem. At the end of each run.

the Matrix Generator's subroutines are called to convert the new set of

:,h variables into the MPS format.

The ARA is the kev element which allows the SCOPE-NPS

modei to solve realistically sized deployment plans. The foilowing ARA

test run results in Table 5-1 demonstrate the ability of the ARA to

reduce the size of a deployment problem.
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TABLE 5-1

RESULTS OF THE ARA

Problem Size Number of Decision Variables Percent CPU
r a i j t Before Reduction After Reduction Reduction TIME

(secs)

13 44 8 416 32 92 % .04

5 4 9 9 6 9,990 176 98 % 1.19
20 4 9 9 50O 333,000 2,200 99.5 % 19.25
90 9 20 20 90 35,461,800 11,150 99.99% 296.56

3. Matrix Generator

The matrix generator reads the list of-good" variables that

are supplied by the ARA and converts them in accordance with the

mathematical formulation to the MPS format (see MPS format [Ref.

17]). The MPS format has long been a standard format in which linear

programming problems are input to solvers.

B. MODEL TEST RUNS

A series of three tests were used to test the SCOPE-NPS model

performance. The purpose of TEST #1 was to verify the performance

of the Arc Reduction Algorithm. The purpose of TEST #2 was to verify

on a small deployment problem the performance of the complete

SCOPE-NPS model (ARA, the Matrix Generator) and the MPS III

optimizer. TEST ?'T3 was designed to demonstrate the ability of

SCOPE--NPS and MPS III to solve a realistic (medium) sized deploy-

ment problem.

Since the SCOPE-OT model was the first model applied to the

joint military transportation problem, "there is no validated
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benchmark solution data for comparison and validation" [Ref. 2:pp. 2-

31. Because a benchmark deployment problem does not exist, the five

deployment plans used to test the SCOPE-NPS model were all

designed during this study. In each of the first four deployment test

plans, each movement request was specifically designed to test for the

presence of a particular solution attribute. These movement requests

were carefully matched to a simple physical network in order to pro-

vide obvious good or bad examples of solution behavior.

The following list is a small sample of the attributes which were to

be tested:

* Would the Are Reduction Algorithm adhere to the rules for
selecting decision variables?

* Would port and asset capacities be adhered to?

• Would movement requirements be picked up at the correct loca-
tion on the correct date?

* Would movement requirements be delivered to the correct desti-
nation on or about the required delivery date?

* If given the choice between two paths from the POE(r) to the
POD(r), wuuld the solution select the cheaper alternative? (i.e., if
time were available, would the solution select a sealift movement
over an airlift movement?)

' Would the solution correctly utilize the -super tanker" (elastic
constraint) to maintain a feasible solution?

1. TEST # 1

The purpose of this test was to test the Arc Reduction Algo-

rithm's ability to identify a set of "good" paths in accordance with the

rules established in Chapter IV. Three small networks were designed

for the express purpose of testing each of the appropriate rules. In

,, V
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each test run, all the acceptable paths were correctly identified. Each

arc component which had been a member of a good path was

accounted for and placed into the list of decision variables to be

retained for the optimizer. The ARA also identified correctly each of

the paths that had been designed to violate one of the acceptable path

*ruies. These paths, along with their arc components, were never

included in the final set of decision variables.

2. TEST #2

TEST #2 was the first test of the complete SCOPE-NPS

model. The purpose of this test was to insure that an optimal solution

possessed the correct attributes as required by the original model

*description. TEST #2 was accomplished in two phases. Phase one of

this test was to insure that the proper solution attributes were being

produced by the model. This phase was conducted on the

GAMS/MINOS optimizer. During phase two of this test, the SCOPE-

NPS model and MPS III solver were expected to duplicate the optimal

solution from the GAMS/MINOS model. The deployment plan used

during this test required that five movement requests be transported

among nine ports and delivered according to a prescribed six-day

schedule.

In phase one, the mathematical formulation given in Chapter

III was developed and refined. This phase of testing was the most

important of all three tests. The ability to solve larger problems would

be of little use of we were not confident that the solutions being pro-

vided on this small scale were not correct.
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A major portion of this testing phase was devoted to a sensi-

tivity analysis. The purpose of this analysis was to insure that proper

solutions would be obtained as the problem situations changed. Ini-

"" -: tially, decision "break points" were identified for each required solu-

tion attribute. For example, the following situation would create a

decision break point for a particular movement request r. Suppose

that a RORO cargo ship has an eight-day travel time -rom POE(r) to

POD(r). If the required delivery date (RDD(r)) for this requirement is

prior to day 8. then a feasible solution would require an aircraft to get
.-.. it there in time. If the RDD(r) was after day 8. then the solution

should allow for the cheaper RORO cargo ship to make the delivery. If

* .there are no other conflicting constraints, proper model behavior can

be tested by adjusting the RDD(r) to both sides of this decision break

point.

This procedure was continued until proper solution behavior

was obtained on both sides of each model attribute or decision "break

point" of concern. When the formulation had proven that it could

fle:ibly provide acceptable solutions to the test deployment problem.

phase one of TEST #2 was concluded.

The purpose of phase two of this test was to validate the MPS

III solution to the SCOPE-NPS model. Since we aiready had a

"benchmark" solution from phase one of this test. it would be easy to

validate the SCOPE-NPS model. When the MPS III solution proved to

be the same as the GAMS/MINOS solution, both the ARA and the

Matrix Generator were shown to be functioning properly.
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Although an identical solution was obtained during phase two.

a major improvement resulted from the reduced number of decision

variables that the SCOPE-NPS model provided to the MPS III opti-

mizer. Initially, the number of decision variables in this deployment

plan was approximately 9.990. Utilizing the "such that" ($) control

operator in GAMS. the number of decision variables was reduced to

approximately 1.800 [Ref. 181. The ARA reduced the initial set of

9,990 decision variables down to 176.

The fact that all the variables in the optimal solution were

included in the reduced set of 176 variables was a very important

developmental milestone. It verified that a 98-percent reduction in

the number of decision variables being considered could be

"intelligently" accomplished without affecting the optimal solution.

3. TEST #3

The purpose of TEST #3 was to demonstrate the ability of the

SCOPE-NPS model and MPS III optimizer to solve a realistic,

medium-sized deployment problem. The deployment plan designed

for this test was given the name "OPLAN TEST-3." Many of the
OPLAN characteristics concerning the movement requirements, asset

and port allocations, and travel times were extracted from the JDA

test deployment plan 'MODELD 123DF02."

*Briefly, OPLAN TEST-3 required that 90 movement requests

be transported among 22 ports according to a 90-day schedule. Thir-

teen of the ports (eight airports and five seaports) were located in the

US and the remaining nine ports were in Europe (four airports and
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• -".' five seaports). Nine types of lift assets were also provided. They

a' ' included four types of cargo planes: C130, C141. C5. and LRWB (long-

range wide-body. DC-10 or Boeing 747): four types of sealift: RORO.

. Breakbulk. Container (fast). and Container (slow); and a "train.- The

purpose of the train was to represent all "surface- shipments: trains.
trucks, and road marches. A straightforward approach to solving this

problem would require the optimizer to consider a set of 35.461.300

decision variables.

Figure 5-1 summarizes the required deliveries scheduled in

OPLAN TEST-3. This schedule is tvTical of a deliberate deolovment.

During the first 20-25 days. there is a gradual build-up of forces. This

build-up is followed by the arrival of the main deployment body. This

phase of a deployment is. of course, the most resource intensive.

Following the main body deployment there is a reduced but steadv

stream of movement requirements designed to reinforce and sustain

the deployed forces.

SCOPE-NPS and MPS III solution results for OPLAN TEST-3:

The SCOPE-NPS took approximately 296 seconds of CPU time to

reduce the set of variables and to create the MPS file. The MPS III

optimizer required 95 seconds of CPU time to provide the optimal

- solution. The solution to OPLAN TEST-3 was obtained in less than

" one percent of the time required by the SCOPE-GT model to solve a

similar problem. In all fairness. it must be said that the SCOPE-GT

model does much more than the model presented in this study. Its

formulation considers more aspects of the deployment problem and it
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Delivery Schedule

OPLAN TEST-3

creates its own data input file directly from OPLAN records. The

SCOPE-NPS model does, however, provide a more reasonable solution

in a fraction of the time.

/€. MPS III statistics revealed that 36 percent of available mem-

orv had been used to solve this problem. Based on these statistics.

there is an obvious potential to solve larger and more detailed deploy-

ment roblems.

Most of the following solution results are portrayed 4raphi-

callv in Figure 5-2.

* The ARA reduced the number of decision variables to be consid-
ered from 35,461,800 down to 11,150.
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OPLAN TEST-3

* When time was available, the model consistently selected the
': sealift mode of transporting each movement requirement.

*'--. * Approximately 69 percent of the entire deployment was trans-
ported across the Atlantic Ocean by sealift.

* Table 5-2 displavs a portion of the sealift deliveries made during
the period day 30 to day 36. The foilowrng sampie demonstratesp how the "spiked sealift" appeared in the solution.

The "spiking" technique seems to be a marked improvement over
-. the continuous "pipe flow" of sealift experienced in a SCOPE-GT
-: 3oiution.
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TABLE 5-2

"SPIKED" SEALIFT OPTIMAL SCHEDULE

Movement Day of Quantity
Request Delivery POE POD (stons) Ship Type

26 30 Norfolk Rotterdam 16,000 Breakbulk

27 30 Norfolk Hamburg 16,000 Breakbulk

S28 36 Houston Hamburg 10000 RORO

29 36 Houston Hamburg 10.000 RORO

30 36 Houston Zeebrugge 2,000 RORO

30 36 Houston Zeebrugge 18.000 CC-(Fast)

*vThe solution identified the following shortcomings in the deploy-
ment plan:

1. During the initial buildup phase (days 1-30). there was a 16
percent shortfall in deliveries. Due to the compressed time
frame of che buildup phase. this shortfall could only be
corrected with an increase in airlift assets.

2. The most significant shortfall in deliveries occurred during the
. first 10 days of the main deployment (days 30-40). During this

period, there was a delivery shortfall of 64.000 stons. This
*: represents 75 percent of the total shortfall.

3. During the last 20 days (days 45-65) of the main deployment,
there was an excess of airlift assets assigned to this deploy-
ment. This large allocation of aircraft was very beneficial from
days 40 to 45 but was excessive once adequate sealift assets
had arrived on about day 45.

J 4. When the deployment moved into the sustainment phase, air-
lift assets were scaled down too much. This shortage resulted
in a 76-percent shortfall in high-priority shipments during the
last 25 days of the deployment.
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C. RECOMMENDATIONS FOR FUTURE STUDY

, 1. The Arc Reduction Algorithm can be modified into a

conservative" heuristic so as to further reduce the set of decision

.- variables. The Arc Reduction Algonthm in its current form is guaran-

,- teed not to affect the optimal solution. For the purposes of evaluating

a deployment plan at the "closure planning" level. this guarantee may

be too restrictive. A simple example will make this point clear. A

five-ton movement requirement does not need every -good" path that

*, the ARA will find for it. It may only need one of the several dozen that

mav be available. On the other hand. a 25.000-ton movement reauest

4' mav need access to every path available. The solution for the five-ton

MR may be to select only two paths (one by air and one by sea) if they

exist. Retaining at least two paths in this case would still enable the

"' solver to look for the cheapest, yet acceptable. shipping alternative.

This smaller set of decision variables may not be able to guarantee an

optimal solution, but it will still enable the solver to answer questions

such as. "Is this OPLAN transportation feasible?"

. 2. Provided that the heuristic described above has been devel-

oped. there may be an advantage to converting the current node-arc

formulation to a 'chain formulation" [Ref. 191. The advantage to this

formulation can be shown in a short example. Suppose only two paths

existed to transport a MR from its origin to its destination, and that

these two paths were formed by linking together a total of seven deci-

sion variables. A node-arc formulation must consider all seven deci-

sion variables. The chain formulation would only have two decision

*5.-/~~ ,62
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variables, one for each path. Once again, the problem has been greatly

reduced in size and the potential exists to solve even larger problems.

The work that would be required to develop this formulation

"' would be minimal since the ARA (heuristic! has already coilected the

information necessary to construct the chain variables.

3. Develop an LP formulation which uses a -cascading- tech-

nique to solve the complete aroe promiem in a series of smaller ones

[Ref. 201. When attempting to solve large depioyment problems. the

current LP formulation and MPS III solver are the weak links. While

the Arc Reduction Algorithm may be able to reduce the size of these

large problems. the MPS III solver is limited to oniy 16.384 constraint0

rows iRef. 15:p. 2-11. A cascading formulation may be used to keep
-... the number of rows being considered at one time within this limit.

4. The SCOPE-NPS does a good job of selecting what should be

transported by sealift. It does not. however, come close to providing a

realistic representation of sealift. As this study had originally

intended, a -hand-ofF or merging technique should be developed to

- combine the SCOPE-NPS model solution with the -Ship Scheduler"

developed by Captain Lally [Ref. 21.

5. There are many formulation attributes which could be added

-' to the SCOPE-NPS to make it a more flexible and realistic model.

- Some of the following formulation enhancements should be

considered for future development:

p., a Develop the formulation so that it will take into account the
'ap

4, critical loading constraints of each different transportation asset.
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When loading aircraft, a key factor is the weight (stons) of what is

to be shipped. When loading ships, the key factor is usually

volume. A change in the formulation would allow the flow balance

constraints to incorporate the conversion of units (stons to

-mtons- measurement tons) at designated nodes (ports) so as to

-..<.* account ,or .he capacity factor which is most important.

b. An alternative. vet simpier. enhancement to the generalization

described above wouid be to develop a conversion factor for

representing the capacity of ships in terms of stons. This

technique wouid oreciude the need to convert units and sTill

realistically model the probiem.

c. Asset usage needs to be modified. The current model will alwavs

use the biggest and fastest asset until its capacity is exceeded.

- The next best asset type will then be used until its capacity is

---  exceeded, and so on. In order to conserve assets, the work load

- needs to be distributed more evenly among each of the assets

available.

d. The current formulation is only capable of shipping dry cargo.

With minor modifications, the formulation can be adopted for

passengers or for fuel. Short tons would be replaced by the

number of passengers or barrels of fuel being shipped. Asset and

port capacities would aiso be changed to reflect the different

units. The model could then be run three times, once for each

major type of movement requirement.
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e. If the length of a time period were made a parameter, then

longer problems could be solved. The modeler must also

recognize and weigh the effects this technique will have on his
solution's resolution.

4: f. Develop a means by which certain movement requests could be

"flagged" for movement by a specific transportation mode.

Before the problem even starts, we know that certain

commodities such as tanks must be moved by sealift. If we can

represent this fact to the optimizer, then not only have we

reduced the number of decision variables, we have also more

realistically modeled the problem.

6. The current version of the ARA is written in FORTRAIN 77. it

mav be beneficial to convert the code to some other language. such as

PASCAL. The ability of PASCAL to dynamically manage memory and to

structure "mLxed mode" (character or numeric) arrays would be two

improvements enabling the ARA to reduce larger problems.

. 7. The ARA is reasonably efficient because of the way it stores or
distributes information out among a great many "short stacks." This

storage and data retrieval technique is referred to as "bucketing." An

improvement over this technique would be to create an appropriate

"hashing" function [Ref. 211. The hashing function would improve the

efficiency of the ARA two ways. It would decrease run time because we

would no longer be searching through stacks looking for information.

While the hashing function does not guarantee direct accessing of your

data, it can approach it. The hashing function would also assist in

reducing the amount of storage required and thus free the program-

mer from the requirement to dimension off huge blocks of memory to

accommodate the required number of stacks.
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D. STUDY CONCLUSIONS

1. Linear programming with variable reduction is a viable alter-

native for modeling and solving both small- and medium-sized

deployment plans. Since a large portion of plans fall into this size

category, consideration should be given to continual development of

. this approach as an alternative solution technique. An LP may never

- . approach being able to solve the largest of deployment oroblems.

There are. however, advantages to being able to solve the smaller- and

medium-sized problems as an LP. These advantages include: (a) the

avaiiabilitv of commercial LP solvers which will make the svstem more

portable and much less expensive to develop than specialized decom-

position algorithms, (b) deployment plan evaluations and modifications

will be much easier to resolve since the LP dual variables are readily

interpretable, and (c) model enhancements and modifications will be

much simpler to implement and test.

2. The ARA is clearly the most significant product of this study.

Its ability to reduce the size of large problems without affecting the

optimal solution was the key factor leading to the success of this

thesis. Regardless of the formulation and solution technique eventu-

ally used by MODES (decomposition or LP), the benefits of reducing

the size of the problem in this manner can be realized. The greatest

benefit will most likely be realized when some version of the ARA is

used in conjunction with a properly functioning decomposition for-

mulation. It may be possible to solve even the largest of deployment

problems once these two methods are applied in tandem.
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3. Even though the sealift flows have been -spiked," there are

.'S still too many "little ships" running around. While this representation

of sealift is an improvement over the previous ships. which appeared

as "pipes." this representation of sealift is still not adequate. The

integer programming effort of Captain Mike Lally may provide the

solution to the sealift portion of this model (Ref. 21.

4. The GAMS modeling language is an exceilent developmental

tool. The ability to proceed directly from the mathematical represen-

tation of a model to an ontimal solution saves the analyst/modeler

countless programming fours, and ailows him to try out many alter-

nate formulations

5. The organization and logic structure of the Arc Reduction

Algorithm has the potential to be applied to a great many management

and/or complicated decision-making problems. The ARA's ability to

intelligently seek out a set of "good" paths is analogous to any problem

where there is a "sequence" of decisions or alternatives to be consid-

ered. In each of these cases, a different set of acceptability rules could

oe developed that would enable the decision maker to reduce the

domain of his decision set down to a more reasonable size.

'
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